	3GPP TSG-T2 #16

Sophia Antipolis, France

11-15 February 2002
	T2-020060

Agenda Item:
T2-020060
Source:
Microsoft

Title:
.NET and Web Services for Devices
Document for:
SWG1

__

.Net and Web Services for Wireless Devices
1Microsoft .NET Overview…

1.NET and XML

2Overview of .NET Framework

2The Common Language Runtime

3The .NET Classes

3Bringing XML Web services to Devices: the .NET Compact Framework

4Overview of Visual Studio Programming with Devices

5Programming devices using Visual Studio .NET

Microsoft .NET Overview…

.NET is Microsoft’s approach to broad adoption of XML Web services, the next generation of software that connects our world of information, devices and people in a unified, personalized way. .NET enables the creation and use of XML-based applications, processes, and Web sites as services that share and aggregate information and functionality with each other by design, on any platform or smart device, to provide tailored solutions for organizations and individual people.

.NET includes a comprehensive family of products, built on industry XML and Internet standards, that provide for each aspect of developing (tools), managing (servers), using (building block services and smart clients) and experiencing (rich user experiences) XML Web services. .NET will become part of the Microsoft applications, tools, and servers you already use today – as well as new products that extend XML Web service capabilities to other areas.

.

.NET and XML
The .NET platform requires XML – specifically XML Web services – to achieve its vision of applications communicating seamlessly across disparate networks, hardware, and software. Whereas previous evolutions in computing experience transitioned from command line to GUI, from GUI to Internet, XML Web services enable applications to communicate and share data over the Internet, regardless of operating system or programming language. XML Web services are not magic. On the contrary, it’s their simplicity that makes them so powerful. They are no more than XML text messages passing back and forth via a network.
The key to making XML Web services work is to agree to a simple data description format. That format is XML. Specifically, XML Web services use XML for three things: the basic wire format, service description, and service discovery.
•
Wire Format: SOAP. At the lowest level, systems need to speak the same language. In particular, communicating applications need to have a set of rules for how they are going to represent different data types (e.g., integers and arrays) and how they are going to represent commands (i.e., what should be done with the data). Also, the applications need a way to extend this language if they have to. SOAP, now on its way to being a W3C, represents one common set of rules about how data and commands will be represented and extended.

•
Description: Web services Discovery Language. Once applications have general rules for how they will represent data types and commands, they need a way to describe the specific data and commands they accept. It’s not enough for an application to say that it accepts integers; somehow, there must be a way to deterministically say that, if you give it two integers, it will multiply them. The Web services Description Language (WSDL), also working its way through W3C standardization, is an XML grammar that developers and development tools can use to represent the capabilities of an XML Web service.

•
Discovery: UDDI. The final layer that you need is a set of rules for how to locate a service’s description – where does a human or tool look by default to discover a service’s capabilities? The UDDI specification provides a set of rules so that a human or development tool can automatically discover a service’s WSDL description.
Once these three layers are in place, developers can easily find a XML Web service, instantiate it as an object, integrate into their applications, and build enough infrastructure so that the resulting application can communicate back to the XML Web service.
Web services can be built by OEMs, Carriers, 3rd party developers, corporations or any other entity that has services that they can expose, either freely or for fee. Thus web services provide an ideal way for additional service revenue for carriers and OEMs, as well as taking advantage of existing customer relationships.
Overview of .NET Framework

Clearly, there is a considerable amount of infrastructure required to make XML Web services transparent to the developers and users. The .NET Framework provides that infrastructure. To the .NET Framework, all components can be XML Web services, and XML Web services are just a kind of component. In effect, the .NET Framework takes the best aspects of COM (the Microsoft Component Object Model) and combines them with the best aspects of loosely-coupled, XML-based computing. The result is a powerful, productive Web component system that simplifies programmer plumbing, deeply integrates security, introduces an Internet-scale deployment system, and greatly improves application reliability and scalability.
The .NET Framework consists of two main parts: the common language runtime (CLR) and a set of unified class libraries. The class libraries include XML-oriented versions of many of Microsoft’s existing development technologies, such as an advanced version of Active Server Pages called ASP.NET, a set of classes for rich user interface development called Windows Forms, and a data access subsystem called ADO.NET.
The Common Language Runtime

Despite its name, the runtime actually has a role in a component’s development time and run time experiences. While the component is running, the runtime is responsible for managing memory allocation, starting up and killing threads and processes, enforcing security policy, as well as satisfying any dependencies that the component may have on other components. At development time, the runtime’s role changes slightly: because it automates so much (e.g., memory management), the runtime makes the developer’s experience very simple, especially when compared to COM today. In particular, features such as reflection dramatically reduce the amount of code a developer must write in order to turn business logic into a reusable component.

Runtimes are nothing new for languages: virtually every programming language has a runtime. Visual Basic is the most obvious runtime (the aptly-named VBRUN), but Visual C++ has one (MSVCRT), as do FoxPro, JScript, SmallTalk, Perl, Python, and Java. The .NET Framework’s critical role, and what really sets it apart, is that it provides a unified environment across all programming languages.
Since the common language runtime is such a fundamental part of the .NET Framework, Microsoft has championed two initiatives to help broad adoption and understanding of it’s facilities. Firstly, working with many commercial and research language experts has enabled over 20 languages and compilers to target the Common Language Runtime. Secondly, the core technologies behind the runtime have been proposed and accepted as a standard in the ECMA standardization body, under the label “Common Language Infrastructure”.
The .NET Classes

The .NET Framework’s classes provide a unified, object-oriented, hierarchical, extensible set of class libraries (“APIs”) for developers to use. Today, C++ developers will use the Microsoft Foundation Classes, Java developers will use the Windows Foundation Classes, and Visual Basic developers will use VB’s APIs. Simply put, the frameworks unify the disparate frameworks Microsoft has today. The result is more than developers no longer having to learn multiple frameworks. By creating a common set of APIs across all programming languages, the .NET Framework enables cross-language inheritance, error handling, and debugging. In effect, all programming languages, from JScript to C++, become equals and developers are free to choose the language that they want to use.
Here are some of the key benefits of the .NET Framework:
· Use any programming language. The .NET Framework enables developers to use any programming language, and for applications written in any programming languages to integrate deeply with each other, enabling current development skills to go forward without retraining.

· Write less code. The .NET Framework uses a highly componentized, plumbing-free design that enables developers to focus on writing business logic. Developers don't need to write IDL or Registry code, and ASP.NET, for example, includes dozens of controls that encapsulate common programmer tasks such as a shopping cart.

· XML/SOAP at the core. The .NET Framework was built for delivering software as a service, so it is built on XML and the SOAP family of integration standards. Simply annotate method calls and the .NET Framework turns them into full XML Web services.

· Run more reliable applications. The .NET Framework includes technologies to make applications more reliable. For example, memory, threads, and processes are managed by the .NET Framework to ensure that memory leaks don't occur. And ASP.NET monitors running Web applications and can automatically restart them at administrator-defined intervals. In addition, when applications are upgraded (versioned), the .NET Framework includes technologies to avoid version conflicts (often called “DLL Hell”).
· Improve performance. The .NET Framework improves the performance of typical Web applications. ASP.NET includes advanced compilation and caching features that improve performance by a factor of two to three over existing Active Server Pages applications.

Bringing XML Web services to Devices: the .NET Compact Framework

The .NET Compact Framework extends the benefits discussed above for the desktop to devices ranging from mobile phones to set-top boxes to PDAs. .NET Compact Framework is a hardware-and operating system-independent environment for running programs on resource-constrained computing devices. The .NET Compact Framework is a compatible subset of the desktop and server .NET Framework, bringing XML Web services support and the same core benefits to devices.

.NET Compact Framework Benefits:
· High performance, secure, client side applications

· Rich user interfaces

· Offline and standalone scenarios in addition to network-connected scenarios

· Deep access to device capabilities

· Ability to access Web services, and cache and manipulate Web service data locally

· Ability to aggregate data from multiple Web services locally

Since the .NET Compact Framework is designed for resourced constrained devices, there are some differences between the full .NET Framework and the .NET Compact Framework. For example, the .NET Compact Framework doesn’t support ASP.NET (a server feature). That said, there is still a large degree of compatibility between the two, and developers can easily leverage skills across the two platforms.
The Compact Framework is also being designed to support the Compact Profile of the ECMA CLI standard
With .NET Compact Framework, developers will create applications for devices, much like they do desktop applications today. This means that the code is compiled and an executable is running on the device. The same rich desktop user interface controls will be there to greet users: tab controls, tree views, Date/Time Picker, etc., thus giving applications for devices the same look and feel of other applications that users are so familiar with. These applications will have access to data that is locally stored on the device, so these device applications can run entirely standalone or choose how to connect to the network. The data on the device can then be periodically updated with a master data source either online or via active syncing. Alternatively, data can even be synchronized between individual devices.

This type of solution would be perfect for a keeping any kind of device data local. For instance, customer information, current orders, inventory levels, even movie times, theaters and headline news.

So the same application that used to require a user to sit down at a PC to operate can now run on a Pocket PC while “relaxing” at the beach, shopping at the mall or attending a press conference.

Overview of Visual Studio Programming with Devices

No longer does device application development have to be a second-class citizen in a separate development environment. Because the .NET Compact Framework is fully integrated with the Visual Studio .NET shell, Visual Studio.NET developers can leverage their existing skills with programming languages such as VB .NET and C# and immediately start developing for devices. Programming in the .NET Compact Framework environment is as easy as it is for the desktop version: Visual Studio .NET developers simply drag and drop controls onto a form to start coding. Better yet, because devices differ so much in their input and display technologies, the VS .NET shell will help the developer by showing accurate emulation for the most popular devices.

Along with these controls, developers can create their own custom controls. These custom controls drop onto forms and are programmed to the exact same way as the built in controls.

Applications created for devices in .NET Compact Framework are upwardly compatible with the desktop. This means that if you have a great application that runs on a Pocket PC and you want to put the same application on a desktop PC, you simply copy & paste the exact code into a Visual Studio desktop project and you’re done. Not a single line of code needs to be edited.

Debugging

When creating Visual Studio .NET applications for devices, debugging and testing using the built in device emulator eliminates the time that used to be wasted syncing to the device for testing, and enables allows the programmer to develop applications without requiring a device to be present. Depending on the targeted device, Visual Studio .NET configures the appropriate emulator for use. Developers are also able to add, remove and rename targeted devices.

Visual Studio .NET device programming also allows for very rich debugging. Break points, single stepping, source code level debugging, managed stack dumps, and watch windows are just a few of the tools device developers can use that desktop developers rely on to debug their applications.

Security

Like the full .NET Framework, the .NET Compact Framework automatically provides core security functions. The common language runtime provides code access security. The same models of security that you get with the desktop applications, you get with .NET Compact Framework. The security policy that should be applied is both adaptable to the problem domain and configurable after deployment where necessary.
Programming devices using Visual Studio .NET

The simple and seamless connectivity for XML Web services in the full .NET Framework is also supported by the .NET Compact Framework. This means it’s easy for devices to be consumers and aggregators of web services.
Using UDDI (Universal Description and Discovery Interface), Visual Studio .NET developers can search the Internet for XML Web services that provide appropriate capabilities based on search criteria.

